Rhodium-Catalyzed Borylative Cyclization of 2-Alkynylaryl Isocyanates with Bis(pinacolato)diboron

Tomoya Miura, Yusuke Takahashi, and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

murakami@sbchem.kyoto-u.ac.jp

Received February 19, 2008

ABSTRACT

2-Alkynylaryl isocyanates reacted with bis(pinacolato)diboron in the presence of a cationic rhodium(I) catalyst to produce borylated 3-alkylideneoxindoles stereoselectively. The carbon-**boron linkage formed was further transformed via reactions such as a cross-coupling and a halogenation reaction.**

Organoboronic acids and esters have become indispensable reagents in organic synthesis due to their unique reactivity, air-stability, and accessibility. $¹$ In addition, recent studies on</sup> organoboronic acid derivatives have demonstrated their potential as pharmaceutical candidates.² Thus, the development of efficient methods for the preparation of organoboronic acid derivatives is currently the subject of intense interest. Transition-metal-catalyzed addition reactions of diboron reagents such as bis(pinacolato)diboron (B_2pin_2) and bis(catecholato)diboron $(B_2 \text{cat}_2)$ to unsaturated organic compounds presents one of the most useful methods of forming \arctan -boron bonds.³ Not only simple alkynes,⁴ allenes,

(1) *Boronic acids: Preparation and Application in Organic Synthesis and Medicine*; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2005.

(2) (a) Irving, A. M.; Vogels, C. M.; Nikolcheva, L. G.; Edwards, J. P.; He, X.-F.; Hamilton, M. G.; Baerlocher, M. O.; Baerlocher, F. J.; Decken, A.; Westcott, S. A. *New J. Chem.* **2003**, *27*, 1419. (b) Paramore, A.; Frantz, S. *Nat. Re*V*. Drug Disco*V*ery* **²⁰⁰³**, *²*, 611. (c) Rock, F. L.; Mao, W.; Yaremchuk, A.; Tukalo, M.; Crépin, T.; Zhou, H.; Zhang, Y.-K.; Hernandez, V.; Akama, T.; Baker, S. J.; Plattner, J. J.; Shapiro, L.; Martinis, S. A.; Benkovic, S. J.; Cusack, S.; Alley, M. R. K. *Science* **2007**, *316*, 1759.

(3) For reviews, see: (a) Ishiyama, T.; Miyaura, N. *Chem. Rec.* **2004**, *³*, 271. (b) Beletskaya, I.; Moberg, C. *Chem. Re*V*.* **²⁰⁰⁶**, *¹⁰⁶*, 2320. (c) Burks, H. E.; Morken, J. P. *Chem. Commun.* **2007**, 4717.

(4) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. *J. Am. Chem. Soc.* **1993**, *115*, 11018.

(5) (a) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. *J. Am. Chem. Soc.* **2000**, *122*, 7122. (b) Burks, H. E.; Liu, S.; Morken, J. P. *J. Am. Chem. Soc.* **2007**, *129*, 8766.

10.1021/ol800380t CCC: \$40.75 2008 American Chemical Society **Published on Web 04/11/2008**

and alkenes,⁶ but also bifunctional substrates^{7,8} react with diboron reagents. We have recently described the rhodiumcatalyzed cyclization reaction of 2-alkynylaryl isocyanates with arylboronic acids.⁹ In this reaction, the aryl group on boron is transferred regioselectively onto the alkyne moiety to produce arylated 3-alkylideneoxindoles.¹⁰ In view of the synthetic 11 and medicinal¹² importance of these heterocycles,

(7) For Pd(0)-catalyzed borylative cyclization of 1,6-enynes with bis(pinacolato)diboron, see: Macro-Martínez, J.; López-Carrillo, V.; Buñuel, E.; Simancas, R.; Ca´rdenas, D. J. *J. Am. Chem. Soc.* **2007**, *129*, 1874.

(8) For borylative cyclization reactions with other boron reagents than diboron compounds, see: (a) Onozawa, S.; Hatanaka, Y.; Tanaka, M. *Chem. Commun.* **1997**, 1229. (b) Onozawa, S.; Hatanaka, Y.; Choi, N.; Tanaka, M. *Organometallics* **1997**, *16*, 5389. (c) Suginome, M.; Matsuda, T.; Ito, Y. *Organometallics* **1998**, *17*, 5233. (d) Kinder, R. E.; Widenhoefer, R. A. *Org. Lett.* **2006**, *8*, 1967.

(9) Miura, T.; Takahashi, Y.; Murakami, M. *Org. Lett.* **2007**, *9*, 5075.

⁽⁶⁾ Simple alkenes: (a) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1336. (b) Dai, C.; Robins, E. G.; Scott, A. J.; Clegg, W.; Yufit, D. S.; Howard, J. A. K.; Marder, T. B. *Chem. Commun.* **1998**, 1983. (c) Ramírez, J.; Corberán, R.; Sanau´, M.; Peris, E.; Fernandez, E. *Chem. Commun.* **2005**, 3056. (d) Trudeau, S.; Morgan, J. B.; Shrestha, M.; Morken, J. P. *J. Org. Chem.* **2005**, *70*, 9538. Electron-deficient alkenes: (e) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. *Tetrahedron Lett.* **2000**, *41*, 6821. (f) Takahashi, K.; Ishiyama, T.; Miyaura, N. *J. Organomet. Chem.* **2001**, *625*, 47. (g) Kabalka, G. W.; Das, B. C.; Das, S. *Tetrahedron Lett.* **2002**, *43*, 2323. (h) Hirano, K.; Yorimitsu, H.; Oshima, K. *Org. Lett.* **2007**, *9*, 5031. (i) Lee, J.-E.; Yun, J. *Angew. Chem. Int. Ed* **2008**, *47*, 145. Allylic carbonates: (j) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. *J. Am. Chem. Soc.* **2007**, *129*, 14856.

we next tried to incorporate a carbon-boron linkage into the 3-alkylideneoxindole skeleton. We report herein the stereoselective synthesis of borylated 3-alkylideneoxindoles by the rhodium-catalyzed cyclization reaction of 2-alkynylaryl isocyanates with bis(pinacolato)diboron.

2-(1-Hexynyl)phenyl isocyanate (**1a**, 1.0 equiv) was treated with B_2 pin₂ (2, 1.5 equiv) in the presence of $[Rh(OH)(cod)]_2$ $(5 \text{ mol } %$ Rh, $\text{cod} = \text{cycloocta-1,5-diene})$ in 1,2-dichloroethane (DCE) at 80 °C for 12 h (eq 1). ¹H NMR analysis of the reaction mixture showed that borylated 3-alkylideneoxindole **3a** was formed as a single stereoisomer (E/Z = $>$ 20:1,¹³ ca.35% yield). Through this sequence, a carbon-boron bond and a carbon-carbon bond were formed simultaneously. The reaction proceeded more facilely (73% yield by ¹H NMR) when the cationic complex $[Rh(cod)]_2SbF_6$ was employed.14 Although **3a** was labile in solution, expeditious chromatography employing Florisil as the solid phase gave **3a** in 71% yield.¹⁵ Once isolated as a yellow solid, **3a** was relatively stable and could be kept at room temperature for months without any detectable isomerization or decomposition. Whereas bis(neopentyl glycolato)diboron $(B_2n\pi o_2)$ gave the borylated product in a lower yield (50% by ¹H NMR), bis(catecholato)diboron was completely inactive under similar reaction conditions.

We propose that the reaction takes place through the pathway outlined in Scheme 1. The substrate **1a** binds to rhodium(I) to generate the chelate complex **A**, which then forms the oxa-rhodacycle **B** by oxidative cyclization.16 A subsequent reaction of **B** with B_2 pin₂ (2) produces the

by a difference nOe study.

(15) The borylated products **3** could be further purified by recrystallization. See the Supporting Information for details.

boryl-rhodium(III) species **^C**. Finally, reductive elimination from **C** affords the diboryl intermediate **D** along with the starting cationic rhodium(I) species to complete the catalytic cycle. Protonolysis of **D** occurs during aqueous workup to give **3a**. It should be noted, however, that another mechanism is also conceivable, which involves oxidative addition of the $B-B$ bond onto a cationic rhodium(I) complex furnishing a diboryl-rhodium(III) intermediate \mathbf{E} ¹⁷, sequential addition
onto the alkyne mojety and the isocyanate mojety and onto the alkyne moiety and the isocyanate moiety, and reductive elimination (Scheme 2).¹⁸

Scheme 2. Proposed Reaction Pathway (II)

The use of other 2-alkynylaryl isocyanates **1** was also examined, with the results being listed in Table 1. Primary

⁽¹⁰⁾ For recent examples of the synthesis of 3-alkylideneoxindoles with catalysis of transition metals, see: (a) Kamijo, S.; Sasaki, Y.; Kanazawa, C.; Schu¨sseler, T.; Yamamoto, Y. *Angew. Chem., Int. Ed.* **2005**, *44*, 7718. (b) D'Souza, D. M.; Rominger, F.; Müller, T. J. J. *Angew. Chem., Int. Ed.* **2005**, *44*, 153. (c) Yanada, R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta, S.; Takemoto, Y. *J. Org. Chem.* **2005**, *70*, 6972. (d) Shintani, R.; Yamagami, T.; Hayashi, T. *Org. Lett.* **2006**, *8*, 4799. (e) Pinto, A.; Neuville, L.; Zhu, J. *Angew. Chem., Int. Ed.* **2007**, *46*, 3291. (f) Tang, S.; Yu, Q.-F.; Peng, P.; Li, J.-H.; Zhong, P.; Tang, R.-Y. *Org. Lett.* **2007**, *9*, 3413.

⁽¹¹⁾ For oxindoles as synthetic intermediates in total synthesis, see: (a) Lin, S.; Yang, Z.-Q.; Kwok, B. H. B.; Koldobskiy, M.; Crews, C. M.; Danishefsky, S. J. *J. Am. Chem. Soc.* **2004**, *126*, 6347. (b) Trost, B. M.; Cramer, N.; Bernsmann, H. *J. Am. Chem. Soc.* **2007**, *129*, 3086.

⁽¹²⁾ For biological evaluations of 3-alkylideneoxindoles, see: (a) Pandit, B.; Sun, Y.; Chen, P.; Sackett, D. L.; Hu, Z.; Rich, W.; Li, C.; Lewis, A.; Schaefer, K.; Li, P.-K. *Bioorg. Med. Chem.* **2006**, *14*, 6492. (b) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Kunkel, M. W. *J. Med. Chem.* **2006**, *49*, 6922. (13) The stereochemistry of the exocyclic double bond was assigned

⁽¹⁴⁾ The results with other catalysts (NMR yield/%): [Rh(cod)_2]BF_4 (36%), $[Rh(cod)_2]PF_6$ (35%), $[Rh(cod)_2]ClO_4$ (60%), $[Rh(cod)_2]BARF$ (45%), $[Rh(cod)(MeCN)_2]SbF_6$ (56%), $[Rh(bpy)(cod)]SbF_6$ (trace), $[Ir(cod)₂] BARP (8%), [Ir(cod)(MeCN)₂] BARP (7%).$

⁽¹⁶⁾ A related rhodacycle intermediate is assumed for the Rh(I)-catalyzed Pauson-Khand-type reaction of 2-alkynylaryl isothiocyanates: Saito, T.; Nihei, H.; Otani, T.; Suyama, T.; Furukawa, N.; Saito, M. *Chem. Commun.* **2008**, 172.

⁽¹⁷⁾ Nguyen, P.; Lesley, G.; Taylor, N. J.; Marder, T. B.; Pickett, N. L.; Clegg, W.; Elsegood, M. R. J.; Norman, N. C. *Inorg. Chem.* **1994**, *33*, 4623.

⁽¹⁸⁾ Although the reaction in DCE- d_4 was monitored by ¹H NMR, no possible intermediate was detected.

Table 1. Rh(I)-Catalyzed Cyclization Reaction of **1** with Bis(pinacolato)diboron (**2**) *a*

a Conditions: **1** (0.125 mmol), **2** (0.188 mmol), $[Rh(cod)_2]Sbf_6$ (6.3 *µ* mol, 5 mol %) in DCE (1.5 mL) at 80 °C for 3–6 h under Ar unless mol, 5 mol %) in DCE (1.5 mL) at 80 °C for 3-6 h under Ar unless otherwise noted. ^{*b*} ¹H NMR yield using toluene as an internal standard; an average of two experiments. $c \text{ [Rh(cod)_2]} \text{SbF}_6$ (12.6 μ mol, 10 mol %).

and secondary alkyl groups were suitable substituents on the alkyne (entries $1-3$). However, the reaction of *tert*-butylsubstituted alkyne **1e** failed to reach completion and the product **3e** was obtained in only 31% yield (entry 4). The terminal alkyne substrate gave a complex mixture. Aryl- and thienyl-substituted substrates **1f**-**1i** successfully participated in the reaction (entries $5-8$). A range of functional groups including chloro, methoxy ether, and ester were tolerated on the aryl group of 1 (entries $9-11$).

The synthetic utility of the isolated borylated 3-alkylideneoxindole **3a** ($E/Z = \ge 20:1$) was demonstrated by further functional-group transformations shown in Scheme 3. The Suzuki-Miyaura cross-coupling reaction with iodobenzene (4) was executed using $Pd[P(t-Bu)₃]$ ₂ as the catalyst to give the phenylated 3-alkylideneoxindole **5** in 85% yield without

a loss of geometrical purity $(E/Z = 1)>20$.¹⁹ Treatment of **3a** with CuBr₂ (6) resulted in the formation of brominated 3-alkylideneoxindole **7** in 96% yield again with retention of stereochemistry $(E/Z = 1:20).^{20}$

In summary, we have developed a new borylative cyclization reaction with wide functional-group tolerance. The sequence results in the stereoselective incorporation of a boryl group on the exocyclic double bond of 3-alkylideneoxindoles. Studies addressing the synthetic scope of the cyclization reaction and the pharmacological properties are ongoing.

Acknowledgment. This work was supported in part by the Takeda Science Foundation and the Ministry of Education, Culture, Sports, Science and Technology of Japan (the Global COE Program "Integrated Materials Science" B-09).

Supporting Information Available: Experimental details and spectra data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL800380T

⁽¹⁹⁾ Littke, A. F.; Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 4020.

⁽²⁰⁾ Murphy, J. M.; Liao, X.; Hartwig, J. F. *J. Am. Chem. Soc.* **2007**, *129*, 15434.